Guess Paper - 2014
 Class - XI
 Subject -Chemistry

SET- A

MM : 70

S.N.	Expected Answer	Marks	Total Marks
1.	Mass of an atom = gram atomic mass/Avogadro's No.	1	1
2.	$\begin{array}{ll}\text { (i) pent-4-yn-2-ol } & \text { (ii) hexan-4-on-1-oic acid }\end{array}$	$1 / 2+1 / 2$	1
3.	' n ' cannot be zero.	1	1
4.	In calculating partial pressures.	1	1
5.	Shifting of π-electrons temporarily towards the attacking reagent.	1	1
6.	Standard enthalpy of formation.	1	1
7.	Alkaline. Due to anionic hydrolysis.	1	1
8.	Staggered. Due to least stearic repulsion.	$1 / 2+1 / 2$	1
9.	Accuracy is close agreement between average value and exact value and precision means different measurements are close among themselves and henceto the average value. (a) $-\mathrm{Br}+2 \mathrm{Na}+\mathrm{Br}-$	2	2
10.	Bromo benzene biphenyl (b) $2 \mathrm{CH}_{4}+2 \mathrm{O}_{2} \quad \underline{ } \quad 20^{\circ} \mathrm{C} / 100 \mathrm{~atm} \quad 2 \mathrm{CH}_{3} \mathrm{OH}$	1	2
	Cu	1	
	(a) Similar properties are repeated after these nos.		
11.	(b) Due to $1 \mathrm{~s}^{2}$ configuration.	1	2

http://www.cbseguess.com/

http://www.cbseguess.com/

http://www.cbseguess.com/

close Sguess $^{\text {g }}$

25.	$\mathrm{Sn}(\mathrm{~s}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$ \qquad (i) as oxidation half Balancing oxidation half, we get $\begin{equation*} \mathrm{Sn}(\mathrm{~s}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \tag{ii} \end{equation*}$ \qquad Again, reduction half is, $\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) .$ \qquad (iii). As oxidation no. of N decreases from +5 to -3 , each N atom gains 8 electrons. Therefore we get, $\begin{equation*} \mathrm{NO}_{3}^{-}(\mathrm{aq})+8 \mathrm{e}^{-} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) . \tag{iv} \end{equation*}$ Balancing for O atoms we get, $\begin{equation*} \mathrm{NO}_{3}^{-}(\mathrm{aq})+8 \mathrm{e}^{-} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) . . \tag{v} \end{equation*}$ Balancing for H atoms gives, $\begin{equation*} 10 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}(\mathrm{aq})+8 \mathrm{e}^{-} \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) . \tag{vi} \end{equation*}$ Now, multiplying (ii) by 4 gives, $\begin{gathered} 4 \mathrm{Sn}(\mathrm{~s}) \rightarrow 4 \mathrm{Sn}^{2+}(\mathrm{aq})+8 \mathrm{e}^{-} \ldots(\mathrm{vii}) \text {. Adding (vi) \& (vii) we get, } \\ 4 \mathrm{Sn}(\mathrm{~s})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+10 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 4 \mathrm{Sn}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \end{gathered}$ (a) Hydrides in which metal to hydrogen ration is fractional. (b) Anion-exchange resins consists of giant hydrocarbon framework attached to basic groups such as OH^{-}with the general composition $\mathrm{R}-\mathrm{NH}_{3}{ }^{+} \mathrm{OH}^{-}$. (c) A sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ whose iml gives 30 ml of dioxygen at STP. (a) Reaction of quick lime with water to give slaked lime: $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$	$1 / 2+1 / 2$ 1 2 No step marking	3

http://www.cbseguess.com/

cbse
 guess

http://www.cbseguess.com/

http://www.cbseguess.com/

http://www.cbseguess.com/ | | | |
| :--- | :--- | :--- |

